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ABSTRACT 

A fluid-saturated, elastic, porous media model is 
used to describe acoustic wave propagation in snow. 
This model predicts the existence o f  two dilatational 
waves and a shear wave. In homogeneous, isotropic 
snow the two dilatational waves are uncoupled from 
one another but involve coupled motion between the 
interstitial air and ice skeleton. Dilatational waves oJ 
the first kind and shear waves are slightly dispersive 
and attenuated with distance. Dilatational waves 
o f  the second kind are strongly dispersive and highly 
attenuated. The model also predicts that the wave 
impedance for snow is close to that o f  air and that 
snow strongly absorbs acoustic wave energy. 

Available experimental phase velocity, impedance 
and attenuation data support the calculated results. 
Phase velocity measurements indicate three iden- 
tifiable categories: fast dilatational waves [phase 
velocity >1 500 m/s), slow dilatational waves [phase 
velocity < 500 m/s) and shear waves. Wave impe- 
dance and attenuation measurements illustrate the 
low impedance, highly absorbing characteristics o f  
snow. Additional impedance, attenuation and phase 
velocity data are required to further test and improve 
the model. 

INTRODUCTION 

Developing an understanding of the propagation 

of acoustic waves in snow has been the object of 
theoretical and experimental work by various investi- 
gators. This interest is the result of a desire to use 
acoustic techniques for: nondestructive methods of 
snow texture classification; the determination of 
mechanical parameters for snow; developing effective 
methods of explosive control for snow slopes; and 
monitoring acoustical emissions. 

Development of textural classification techniques 
and determination of the appropriate mechanical 
parameters for snow require an accurate acoustic 
propagation model. Earlier acoustic wave propagation 
models have used either porous media representations 
which assumed a rigid ice skeleton, or used contin- 
uum elastic or inelastic models (Nakaya, 1959a, 
1959b, 1961; Ishida, 1965; Smith, 1965; Yen and 
Fan, 1966; Chae, 1966; Smith, 1969). These models 
do not adequately explain observed wave propagation 
phenomena in snow. Air pressure waves, propagating 
in the interstitial pore space, and dilatational and 
shear stress waves, propagating in the ice skeleton, 
have been detected in snow (Oura, 1952; Smith, 
1965; Yamada et al., 1974; Gubler, 1977). However, 
neither the porous media or continuum models can 
explain all three wave propagation modes. In this 
paper, a model is presented which is more representa- 
tive of acoustical wave propagation in snow. It 
utilizes the work of Biot (1956a, 1956b) to treat the 
snow as a porous material with an elastic skeleton 
saturated by a compressible viscous fluid (air). 

In the following sections, the equations of motion 
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for acoustic wave propagation in porous media, and 
their solutions, are presented and adapted to snow. 
The characteristics of the solutions describing 
acoustic waves in snow are discussed in detail and 
compared with the experimental results of Oura 
(1952a), Smith (1965), Yamada et al. (1974), 
Bogorodskii et al. (1974) and Johnson (1978). 

ACOUSTIC WAVES IN SNOW 

Equations of motion 

Biot (1956aand b) developed stress-strain rela- 
tions for a porous aggregate including the effects of 
fluid pressure and dilatation. He considered the 
dynamics of the material and the coupling between 
fluid and solid under the assumptions that the 
material is statistically homogeneous and isotropic 

in the region of interest, behaves in a linearly elastic 
manner and that thermoelastic effects are negligible. 
The macroscopic stress-strain relation for the 
medium was derived by assuming the strain energy 
function, and the coupling effect between the elastic 
skeleton and compressible fluid was accounted for by 
introducing a mass coupling parameter into the 
kinetic energy of the system. Dissipation of energy 
by the viscous fluid was expressed in terms of the 
relative velocity between the fluid and solid; internal 
friction of the solid material was neglected. 

The upper bound of frequency for which Blot's 
model applies is that at which the wavelengths are 
the order of  magnitude of (or greater than) the linear 
cross-sectional dimensions of the pores (Biot, 1956b). 
This frequency limitation is imposed because the 
effects of scattering become important as the wave- 
length approaches the pore size. 

The constitutive relations describing the porous 
material are: 

oi/ = (Ae + Qe)~i/ + 2Nei/ ,  
(1) 

s = Q e + R e ,  

where oi/is  the stress in the solid framework, s is the 
fluid pore pressure, e and e are the dilatations of the 
solid and fluid, ei/ is the strain in the solid, and 6i/ 
is the Kroneker delta. A is an elastic constant and N 
is the shear modulus for the solid. The coefficient R 

is a measure of the pressure on the fluid required to 
force a certain volume of the fluid into the aggregate 
while the total volume remains constant. The coeffi- 
cient Q is of the nature of a coupling between the 
volume change of the fluid and that of the solid 
(Blot, 1956a). These parameters are inherently posi- 
tive and satisfy the inequality 

(A + 2 N ) R - Q 2  > 0 .  

Blot derived the equations of motion for the porous 
media, using Lagrangian equations, which have the 
form 

NV: u + V ((A +N)V'u + Q V" U) = b2/bt2(Ollu 

+ P12U) + b(O) a/bt(u - U) ,  

V ( Q V . u  + R V . U )  = b2/bt2(p12zl+ P22U ) (2) 

- b(O) O/Ot ( u -  U) , 

where u is the displacement vector for the solid 
skeleton and U is the displacement vector for the 
fluid. The parameters On, 022 and 012 are dynamic 
coefficients that take into account the inertial effect 
of the moving fluid. These parameters are related to 
the mass densities of the solid (Os) and the fluid (Of) 
by the equations 

P = 01x +2012 +P22 = (1 -/3)Ps +~3Of, 

where p is the density of the aggregate, Ps is the 
density of  the solid material, Of is the density of the 
fluid material, and where 

Pl l  +P12 = (1 - /3 )ps ,  

Pl2 + P22 = /3Pf. 
The parameters satisfy the inequalities 

Pl l  > 0 ,  P 2 2 / > 0 ,  

P12 ~<0 , PltP22-P~2 > 0 ,  

and 

(.4 +2iV)p11 + R p22 - 2Q Px'2 > O , 

where 13 is the effective porosity of the medium 
and 012 is an apparent mass term that acts as a 
coupling term between fluid and solid and whose 
influence on the dynamic relations increases as the 
fluid flow becomes more restricted in the material. 
The dissipation of an acoustic wave caused by fluid 
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friction is taken into account through the parameter 
b(O) which is related to the permeability (B), the 
effective porosity (13) and the fluid viscosity v(0) 
by the equation 

b(O) = /32v(0)/B. (3) 

The frequency dependent correction term, v(O), 
serves as a measure of the deviation from Poiseuille- 
flow friction as a function of the nondimensional 
frequency parameter, 0 = d (~/v)l/2; co is the fre- 
quency of the disturbance, v is the kinematic 
viscosity of the fluid and d is a characteristic linear 
dimension of the pore cross-section. Pore geometry is 
described by a structure factor (T) which is usually 
determined experimentally from dispersion and 
attenuation data (Biot, 1956b). The physical signif- 
icance of these parameters has been discussed by Biot 
(1941, 1956a, 1956b), Biot and Willis (1957) and 
Yew and Jogi (1976) and will not be repeated here. 

Solutions to the equations of motion 

Biot's theory predicts the existence of two 
attenuated dilatational waves and an attenuated shear 
wave. The characteristics of these waves in snow can 
be determined by applying Deresiewicz and Rice's 
(1962) solutions of Biot's equations, in which Helm- 
holtz's method is used to describe the displacement 
vectors for the solid and fluid components of the 
aggregate; 

u = grad (¢1 + q~2) + curl H ,  
(4) 

U = grad 0al~b2 +#5¢5) + curl (oar-f). 

The scalar potentials q~l and 4~2 describe the propaga- 
tion characteristics of dilatational waves of the first 
and second kind, respectively. H describes the 
propagation characteristics of shear waves. The func- 
tions/21,/25 and c~ depend on the mechanical param- 
eters describing the porous medium and frequency. 
For plane wave propagation the scalar potentials and 
Hare given by 

~bi = D exp[i(cot - 8ix/)] 

~2 = E exp[ i (cot-  82x1)] (5) 

H = F e x p [ i ( c o t - 8 3 x / ) ] ,  j = 1,2,3,  

where D, E and F are constants. The solutions and 
relationships between the wave parameters (SK, ta~, 

#a, ~) and material parameters (.4, N, R, Q, b (0)) are 
described in detail by Deresiewicz and Rice (1962). 
These solutions to Biot's equations indicate that dila- 
rational waves of the first and second kind and shear 
waves affect the displacements in both the fluid and 
the solid (eqns. (4)). This means that wave propaga- 
tion motions in the fluid and solid are coupled to 
each other. Equations (5) show that the three wave 
types propagate independently from one another 
with different propagation constants (8 t, 82 and 8a) 
and the same angular frequency (co). 

Determining the mechanical parameters for snow 

The dynamic nature of a porous material is deter- 
mined by the parameters A, N, R, and Q. These 
parameters are calculated from four measurable 
coefficients (N, K, r, 3') through the relations 

N = Vs2Pd, 

A = (')'/K + 17 2 + (1 - 2fl) (1 - r /K) ) / (3 '  + r - r 2 / K )  

- 2N/3,  (6) 

Q = (fl(1 -/3 - r/t~))/(3, + r - r2/K), 

R = /32/(3, + r -  r 2 / ~ ) ,  

where N is the shear modulus of the bulk material, 
Vs is the propagation velocity for shear waves in the 
porous aggregate, Pd is the density of the drained 
aggregate, t~ is the jacketed compressibility of the 
porous aggregate (the pore pressure of the aggregate 
sample is held constant, 0 Pa, during the application 
of an external pressure), r is the unjacketed compres- 
sibility (the sample's pore pressure equals the applied 
pressure), and 7 is a measure of the fluid per unit 
pressure that enters the pores under the application 
of fluid pressure (Blot and Willis, 1957). 

The physical interpretation and methods for de- 
termining % to, ~',/x and/7 from static tests have been 
discussed by Biot and Willis (1957) and Yew and 
Jogi (1978). However, static tests are not suitable 
when the material properties of the porous media 
are dependent on loading rate as is the case for snow 
(MeUor, 1964, 1974). Johnson (1978) has shown that 
the Blot-Willis coefficients can be determined for 
snow using dynamic tests and the relations 

N = Vs2Pd, 1/r = ( Y s N ) / ( 9 N - 3 Y s ) ,  
(7) 

r ~- Ci, 3' =/3(Cair - r ) ,  
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TABLE 1 

Calculated Biot-Willis coefficients for snow assuming a fluid-saturated porous material model. Young's Modulus and the shear 
modulus data were taken from Smith (1965) and Yamada et al. (1974) 

P Ys ~ 1/~ r "r A N Q R 
Density Young's Porosity (MPa) (Pa) (MPa -1 ) (MPa) (MPa) (KPa) (KPa) 
(kg/m 3) modulus 

(GPa) 

Equitemperature metamorphosed snow 
210 0.03 0.772 37 0.837 7.61 29.3 11 22.8 78.2 
250 0.085 0.728 50 0.837 7.19 26.3 35 27.1 73.7 
300 0.2 0.674 200 0.837 6.65 150 75 31.2 68.3 
350 0.423 0.620 241 0.837 6.12 125 175 36.5 62.8 
410 0.427 0.554 275 0.837 5.47 160 172 42.8 56.1 
440 0.61 0.522 416 0.837 5.15 247 253 44.9 52.9 
508 1.33 0.448 571 0.837 4.42 173 598 51.1 45.4 
551 2.22 0.401 1532 0.837 3.96 944 882 47.7 40.6 
600 2.73 0.348 2275 0.837 3.43 1575 1050 46.8 35.3 

Temperatureg~dient me~morphosedsnow 
360 0.28 0.608 97.6 0.837 6.0 6 137 39.0 61.6 
400 0.396 0.565 153 0.837 5.58 30 185 43.0 57.2 
500 0.865 0.456 431 0.837 4.5 184 371 51.5 46.2 

where Ys is the dynamic Young's modulus and Ci 
and Cair are the bulk compressibili ty for ice and 
air. Because r ,~ 3' "~ 1/~ the errors in determining r 
or 3' must  be large before they significantly affect 
the calculated values of  A ,  N,  R and Q (eqns. (6)). 
Equations (7), the dynamic measurements o f  N and 

Ys by Smith (1965),  and the wave propagation 
velocity measurements by  Yamada et al. (1974) 
can be used to calculate representative values of  
A ,  N,  R and Q for snow (Table 1). The effective 
porosity (13) values in Table 1 were calculated from 
the relationship 

= 1-(P~a/Pi) 

where Pi and Psn are the densities of  ice and snow, 
The relative importance o f  the consti tuent elements 

of  snow (the ice framework and air-filled pore space) 
is illustrated by  the changes in the material param- 
eters with respect to density (porosity).  An increase 
in snow density is associated with an increase in the 
dilatational and shear parameters A and N,  an initial 
increase in Q (until  p = 508 kg/m 3) then a decrease, 
and a decrease in R (Table 1). These results demon- 
strate that  the contr ibut ion of  the fluid (air) to the 
mechanical behavior of  snow becomes more signif- 
icant as the porosi ty  increases. It is also apparent that 

the ice framework dominates the mechanical behavior 
of  snow at high densities (low porosity).  

THEORETICAL PREDICTION OF THE ACOUSTIC 
RESPONSE OF SNOW 

The acoustic wave propagation properties of  snow 
are described by the phase velocities and at tenuat ion 
characteristics of  the three wave types and the wave 
impedance of  snow. The phase velocities for the two 
dilatational waves and shear wave are given by the 
ratio of  the angular frequency to the real part of  the 
propagation constant:  

Ck = w/Re(~ik), k = 1 ,2 ,3 .  

Attenuat ion coefficients for the wave types are given 
by the imaginary part of  the  propagation constant;  

ak = Im(~k),  k = 1,2,3 .  

The wave impedance (W) is a ratio between the pres- 
sure and normal particle velocity at a point  on the 
surface of  a sample. It is a material constant and is 
independent o f  position in a homogeneous, isotropic 
sample. If the pressure and particle velocity are not  
in phase then W is a complex quanti ty where 
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W = W r + i W  i . 

W r is the resistance and is a positive value when 
acoustic energy is t ransmitted into the snow. 14;/ is 
the reactance and depends on the phase difference 
between the pressure and partical velocity. The ratio 
of  the acoustic wave resistance of  the reflecting 
medium (snow) to that of  the medium that carries 
the incident wave (air) is given by 

W/PoCo = lYr/PoCo + i W i / p o c  o. 

The characteristic impedance o f  air is #oCo where #o 
is the air density and Co is the acoustic wave propaga- 
tion velocity in air. In this article calculated and 
measured impedance data are presented as the ratio 
of  the wave impedance of  snow to the characteristic 
impedance of  air. 

In this study representative values of  permeabili ty 
(B), structure factor (q~) and the material parameters 
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A, N,  Q, R for snow from Ishida (1965) and Johnson 
(1978) were used to calculate the theoretical disper- 
sion, at tenuation,  and wave impedance curves. 
The calculated curves for the phase velocity disper- 
sion and at tenuation of  dilatational waves of  the first 
and second kind and shear waves, where P~2 = 0, are 
shown in Figs. 1--10. Dilatational waves of  the first 
kind and shear waves show very little dispersion and 
their phase velocities increase with increasing fre- 
quency and snow density (Figs. 1 and 3). Both wave 
types are slightly at tenuated.  Ampli tude at tenuation 
is dependent  not only on the frequency but  also on 
path length, density and air permeabili ty (Figs. 4 - 6 ,  
8 and 9). Attenuation coefficients increase with 
increasing frequency. They also increase, for a given 
frequency, with decreasing snow density and air 
permeabili ty in the low frequency range (Figs. 5, 6, 
8 and 9). At high frequencies, permeabili ty decreases 
result in larger at tenuation coefficients at a given fre- 
quency (Figs. 8 and 9). Dilatational waves of  the 
second kind are strongly dispersive and attenuated. 
Their phase velocities increase with frequency but  

A 

B 

0 I I I I I I 
t0 402 '104 '106 

FREQUENCY (Hz) 
Fig. 2. Predicted phase velocity dispersion for dilatational 
waves of the second kind. The density, permeability and 
structural information are the same as in Fig. 1. 

Fig. 1. Predicted phase velocity dispersion for dilatational 
waves of the first kind in snow. 
(A) p = 210 kg/m s, B = 1.5 ×10 -4 s m3/kg, 'r = 2.86, 
(B) p = 300 kg/m s, B = 1.3 X10 -4 sm3/kg, • = 2.86, 
(C) p = 410 kg/m s, B = 0.9 Xl0-* s m3/kg, "1' = 2.86, 
(D) p = 508 kg/m% B = 0.3 X 10-* s m3/kg, ~/" = 2.86. 
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Fig. 3. Predicted phase velocity dispersion for shear waves in 
snow. The density, permeability and structural information 
are the same as in Fig. 1. 

decrease with increasing snow density (Fig. 2). 
Amplitude attenuation is controlled by and increases 
with frequency, density and decreasing air permeabil- 
ity (Figs. 4, 7 and 10). 

Calculated wave impedances for snow of different 

Fig. 4 (a). Predicted amplitude attenuation of  shear waves in 
snow. p = 210 kg/m% B = 1.5 X 10-* s m3/kg, T = 2.86. 
A o is the wave amplitude at a distance of  0 m. 

Fig. 4(b).  Predicted amplitude attenuation of  dilatational 
waves of  the first kind (fast waves) and dilatational waves of  
the second kind (slow waves) in snow. # = 210 kg/m 3, B =  
1.5 X 10 -4 s m3/kg, T = 2.86. 

Fig. 4(c). Predicted amplitude attenuation of  shear waves in 
snow. p = 5 0 8 k g / m  3, B = 0 . 2 X 1 0  -4 sm3/kg ,  T = 2.86. 

Fig. 4(d).  Predicted amplitude attenuation of  dilatational 
waves of  the first kind and dilatational waves of  the second 
kind. p = 508 kg/m% B = 0 . 2 X 1 0  -4 sm~/kg,  T = 2.86, 

air permeabilities and densities are shown in Fig. 11, 
in which the ratio between the wave impedance for 
snow and the characteristic impedance of air is 
plotted against frequency. These nondimensional 
curves indicate that the impedance of snow differs 
little from that of air. This would explain the strong 
acoustic absorption characteristics of snow (Oura, 
1952b; Ishida, 1965; Johnson, 1978), and implies 
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Fig. 5. Predicted a t t enua t ion  coefficients for dilatational 
waves o f  the  first kind. 
(A) p = 210 kg /m 3, B = 1 . 5 X 1 0  -4 s m S / k g ,  T--- 2.86, 
(B) p = 300 kg/m% B = 1 . 3 X 1 0  -4 s m S / k g ,  T = 2.86, 
(C) P = 508 kg/m% B = 0 . 3 X 1 0  -4 s m 3 / k g ,  T = 2.86. 

t h a t  a la rge  p o r t i o n  o f  t h e  a c o u s t i c  e n e r g y  

t r a n s m i t t e d  a c r o s s  a n  a i r / s n o w  i n t e r f a c e  is t r a n s -  
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s e c o n d  k i n d .  
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Fig. 7. Predicted a t tenuat ion  coefficients for dilatational 
waves o f  the  second kind in snow. Densi ty,  permeabil i ty and 
structural  informat ion are the  same as in Fig. 5. 
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Fig. 6. Predicted a t t enua t ion  coefficients for shear waves in 
snow. Densi ty,  permeabil i ty and structural  informat ion  
are the  same as in Fig. 5. 
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Fig. 8. The predicted influence of  air permeabil i ty on the  
a t t enua t ion  o f  dilatational waves o f  the  first kind. 
(A) p = 210 kg /m 3, B = 3 . 6 X 1 0 - *  s m 3 / k g ,  T = 2.31, 
(B) p = 210 kg /m 3, B = 1 . 5 X 1 0  -~ s m3/kg, I '  = 2.31, 
(C) p = 2 1 0 k g / m  3, B = 0 . 2 X 1 0  -4 s m 3 / k g ,  I '  = 2.31. 
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Fig. 9. The predicted influence of air permeability on the 
attenuation coefficients for shear waves. Density, permeabil- 
ity and structural information are the same as in Fig. 8. 
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Fig. 10. The predicted influence of air permeability on the 
attenuation coefficients for dilatational waves of the second 
kind. Density, permeability and structural information are 
the same as in Fig. 8. 

munica t ion) .  These effects  can be t reated by 

assuming that  the ice skeleton is a viscoelastic 

mater ial  in the phenomenolog ica l  sense. The 

equat ions  o f  m o t i o n  describing a porous  material  

can then be modi f ied  by  using operators  to 

incorpora te  internal  solid dissipation mechanisms as 
out l ined by Biot  (1962a,  1962b).  
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Fig. 11. Predicted wave impedance for snow. 
(A) p = 410 kg/m% B = 1.0X10 -4 s m3/kg, 
(B) p = 210 kg/m 3, B = 3 .6×10  -4 sm3/kg, 
(C) p = 210 kg/m% B = 1.0X10 -4 s m3/kg, 
(D) p = 410 kg/m% B = 0 .9X10 -4 s m3/kg, 
(E) o = 350 kg/m% B = 1 .0×10-* s m3/kg, 
(F) p = 210 kg/m% B = 4.9 X 10-" s m3/kg, 

2O 

T = 2.86, 
T = 2.86, 
T = 2.86, 
T = 2.86, 
T = 2.86, 
T = 2.86. 

P R E D I C T E D  A C O U S T I C A L  R E S P O N S E  

C O M P A R E D  T O  A V A I L A B L E  T E S T  D A T A  

The exper imenta l  results o f  several authors  are 

used in this section in a general compar ison be tween  

observed and theoret ica l  acoust ic  wave phenomena  in 

snow. Unfor tuna te ly ,  l i t t le  exper imenta l  data are 
available to use in a direct  compar ison wi th  the 

theoret ical  results. No data have been published 

showing bo th  exper imenta l ly  de te rmined  phase 

veloci ty  dispersion and a t tenua t ion  characterist ics 

for snow. Some exper imenta l  phase veloci ty  data  are 

available f rom the work  o f  Oura (1952a) ,  Smi th  

(1965) ,  Yamada  et al. (1974) ,  Bogorodskii  et al. 

(1974) ,  and others.  These can be used to illustrate 
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TABLE 2 

A comparison between experimentally determined wave propagation velocities (from I Ouru, 1952a, 2Smith, 1965, 3 Yamada 
et al., 1974, and 4 Bogorodskii et al., 1974) and theoretically calculated phase velocities for snow 

Density 
(kg/m 3) 

Experimental phase velocity (m/s) Theoretical phase velocity (m/s) 

Fast Slow Shear Dilatational wave Dilatational wave Shear 
wave wave wave of the first kind of the second kind wave 

125 - 2 7 7 1  . . . .  
210 5003 2561 2293 496 282.7 228.9 
250 6253 2451 3753 621.6 273.7 373.9 
256 - 254 'l . . . .  
280 - 2 0 7 1  . . . .  
288 - 2 4 2 4  . . . .  
300 10003 - 5003 1000 273.7 500 
305 - 2 8 5 4  . . . .  
400 - 1 8 0 1  . . . .  
410 12702 - 7462 1270.1 273.1 740.5 
440 13122 - 7582 1312.8 271.4 758.5 
508 16372 - 10852 1637 269.9 1085.1 
551 22252 - 12652 2225.3 268.4 1265.1 
600 25182 - 13212 2520.4 269.4 1323 

the general similarity between the experimental  
results and theory.  Table 2 summarizes and compares 
some of  the existing experimental  phase velocity data 
with the theoretically predicted high frequency 
values. This should be a realistic comparison because 
the experimental  measurements were made using 
either explosive or high frequency acoustical sources. 
The various experimental  techniques were not  
designed to distinguish between dilatational waves of  
the first and second kind. However, the measured 
phase velocities for dilatational waves can be 
organized into two distinct velocity categories which 
are similar to those predicted by theory.  The mea- 
sured shear wave velocities for snow are in good 
agreement with theoretical  predictions. The good 
agreement between experimental  and calculated 
propagation velocities for dilatational waves of  the 
first kind and shear waves is to be expected. The 
mechanical parameters for the porous media model  
were calculated using the experimental  propagation 
velocity results for shear and compression waves 
which are directly related to the dilatational waves 
of  the first kind and shear waves in Biot 's theory. 
The measured propagation velocities for slow waves 
agree qualitatively with calculated values for dilata- 
tional waves of  the second kind. Both the measured 
and calculated propagation velocities are relatively 
low and decrease with increasing snow density. 

A quantitative comparison is not possible since the 
parameters describing the snow in Oura's (1952a) 
and Bogorodskii et al.'s (1974) experiments were not 
given. 

No data are available for at tenuation of  dilata- 
tional waves of  the first and second kind and shear 
waves in snow. Transmission loss experiments using 
dilatational waves have been conducted by a number 
of  investigators in an effort to determine the attenua- 
tion characteristics of  acoustic waves in snow (Ishida, 

1965; Lang, 1976; Johnson, 1978). These experi- 
ments were not  capable of  examining the at tenuat ion 
characteristics for each of  the two dilatational waves 
because the effects of  coupling between the air and 
the ice framework were unknown. Pressure changes, 
which according to theory are due to the coupled 
influence of  dilatational waves of  the first and second 
kind (eqns. (1) and (4)), were used to determine 
transmission losses. This means that the existing 
transmission loss measurements include the coupled 
influence of  the two dilatational wave types. Addi- 
t ionally,  in some cases the experimental  setups were 
such that reflections at boundaries and geometrical 
losses associated with the use of  point  acoustic 
sources further complicated the interpretat ion of  
measurements (Ishida, 1965; Lang, 1976). Johnson 
(1978) has conducted transmission loss experiments 
on snow using a wave tube to generate acoustic plane 
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waves and a traveling probe microphone to measure 
the acoustic wave pressure. Such an experiment 
is still not  able to examine the at tenuation of  each 
wave type but  does eliminate boundary reflection 
and geometrical at tenuat ion problems. Johnson's  
measurements are useful in that the plane wave 
at tenuat ion of  the coupled dilatational waves propa- 
gating in the air pores can be compared between 
theory and experiment in a relative fashion. The air 
pressure within the pore system of  snow can be 
calculated from eqn. (1) and for one dimension is 

s = Qaul/aXl +Rau1/ax~ (8) 

where u and U are defined by  eqns. (4) and (5). The 
coupling influence of  dilatational waves of  the first 
and second kind on the air pressure wave is apparent 
from eqns. (4) and (8). This coupling accounts for 
the form of  the theoretically predicted amplitude 
decay of  the air pressure plane waves (Fig. 12). 
Preliminary at tenuat ion measurements of  air pressure 
plane waves by  Johnson (1978) (Figs. 13(a) and 
13(b)) are similar to those of  Fig. 12. These results 
indicate that an air pressure wave is strongly attenu- 
ated near the snow/air interface (acoustic energy 
transmitted from air into snow) and at tenuated 
to a lesser extent  away from the interface. The 
theoretical description implies that dilatational waves 
of  the second kind are responsible for the strong 
at tenuat ion effects. More experiments are needed to 
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Fig. 12. Predicted amplitude attenuation of planar air 
pressure waves in snow using Blot's model. # = 210 kg/m 3, 
B = 1.5 X 10 -4 s m3]kg, I '  = 2.86. Pressure wave calcula- 
tions are from s = Qe + Re .  A o is the wave amplitude at a 
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Fig. 13(a). Measured amplitude attenuation of planar air 
pressure waves in snow. # = 230kg[m 3, B=  1.3X10 -4 s 
m3/kg. A o is the wave amplitude at a distance of 0 m. 

Fig. 13(b). Measured amplitude attenuation of planar air 
pressure waves in snow. p = 230 kg/m 3, B= 1.3X10 -4 s 
m3/kg. 

determine accurately the at tenuation characteristics 
of  acoustic waves in snow. 

Wave impedance measurements have been made by 
Johnson (1978) using a wave tube abutted against 
homogeneous snow layers. Figure 14 shows experi- 
mental wave impedance data for several different 
snow layers. These measurements are similar to the 
theoretical curves of  Fig. 11 and further illustrate 
that  snow is a low impedance, highly absorbing 
material. The impedance data for snow support  the 
theoretical predictions that  the acoustic properties 
of  snow are strongly affected by the air-f'ffled pore 
system. 
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Fig. 14. Measured wave impedance for naturally deposited 
s n o w .  

(A) p = 420 kg]m 3, B = 1.2 × 10 -4 sm3/kg, 
(B) p = 200 kg/m 3, B = 4.9 × 10 -4 sm3/kg, 
(C) p = 200 kg/m a, B = 1.5 X 10 -4 sma/kg, 
(D) p = 350 kg/m a, B = 0.5 X 10 -4 sm3/kg, 
(E) p = 210kg/m a, B = 2.17 X 10 -4 sma/kg. 

A lack of  experimental  data limits the extent  to 
which a theory for acoustic wave propagation in 
snow can be tested and improved. There is a great 
need at present for accurate phase velocity dispersion, 
ampli tude at tenuat ion and wave impedance measure- 
ments for each o f  the wave types identified by the 
model. 

CONCLUSIONS 

Blot 's (1956a, 1956b) model  for acoustic wave 
propagation in an elastic fluid-filled porous media 
has been used to describe wave propagation in snow. 

This theory predicts the existence of  two dilatational 
waves and a shear wave in snow. The two dilatational 
waves are uncoupled from one another but  involve 
coupled mot ion between the air and ice skeleton. 
Dilatational waves of  the first kind and shear waves 

are only slightly dispersive and at tenuated with 
distance. Dilatational waves of  the second kind are 
strongly dispersive and highly at tenuated.  The theory 
also indicates that the wave impedance for snow is 
relatively close to that o f  air differing, over a range 
of  values, by less than a factor of  five (Fig. 11). 
This indicates that a large port ion of  the acoustic 
wave energy is transmitted into snow through the air 
pores as dilatational waves of  the second kind. 

Accurate experimental  measurements o f  phase 
velocity, amplitude at tenuation and wave impedance 
are required to test the theory.  Such experimental 
data are not  presently available. The experimental 
data which do exist tend to support  the general 
predictions of  the theory. Phase velocity measure- 
ments for snow are in the same range as those pre- 
dicted by theory for the two dilatational waves and 
shear waves, as are at tenuation measurements of  air 
pressure plane waves in snow and wave impedance 
measurements. 
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