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ObjectiveObjective

Development of a combined tire-terrain model 

• Tire performance

• Tire design

• Equipment specification

• Terrain response (compaction)
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Why we are doing this?Why we are doing this?

Properties of snow vary 
temporally and spatially 
making it difficult to get 
repeatable test results on 
what is seemingly the 
“same” snow.

There is little experience with 
mobility of lightweight 
vehicles (e.g. robots) on 
snow.
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TasksTasks

Generate Snow Material Model

Evaluate Suitable Tire Models

Combined Tire-Snow Models
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Combined Tire-Snow Models



Characteristics
• Density
• Depth
• Temperature
• Wetness
• Hardness or bond 

strength
• Crystal or grain size
• Crystal or grain shape
• Stratigraphy

Classifications
• Grain shape
• Metamorphism
• Regional characteristics

Snow PropertiesSnow Properties



Snow MetamorphismSnow Metamorphism
Thermal gradients cause metamorphism



Snow Material ModelsSnow Material Models

Models Considered
Crushable Foam

Cap Drucker-Prager

Component of Cap Plasticity Models
Elastic properties 

Yield surface 

Plastic flow potential 

Hardening rule
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Snow Model ValidationSnow Model Validation

Plate Sinkage Tests in the 
Laboratory and Field

• Forces

• Displacement

• Compaction / Density
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Plate Sinkage Test SimulationPlate Sinkage Test Simulation

Vertical StressVertical StressDeformationDeformation



Plate Sinkage ForcesPlate Sinkage Forces
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Comparing Measured
Density

to Model Values

Comparing Measured
Density

to Model Values

• Plastic Strain

• Model Density
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Tire ModelsTire Models

Rigid Wheel Model

Shell model with smooth tread

Shell model with ribbed tread

Rigid Wheel Model
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Shell model with ribbed tread



Rigid Tire on SnowRigid Tire on Snow

• Analytical rigid surface for 
wheel & tire

• Deformation of 
tire << snow

• Good agreement 
with measured data
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Modal Analysis Tire - SmoothModal Analysis Tire - Smooth

• Hybrid tread elements

• Free rolling wheel 
using hub displacement

• 6602 elements
(half model)
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Modal Analysis Tire - RibbedModal Analysis Tire - Ribbed

• Hybrid tread elements

• 11 step infl. and load
w/ varying conv. control

• Four tread grooves

• 13562 elements
(half model)
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Validation of Contact ParametersValidation of Contact Parameters

•Deflection

•Contact Area

•Contact Stress Distribution

•Deflection

•Contact Area

•Contact Stress Distribution



Deflection (LT Tire)Deflection (LT Tire)
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Contact Pressure DistributionContact Pressure Distribution

Smooth tread Ribbed tread



Contact PressureContact Pressure

Measured Smooth ModelRibbed Model



Combined Tire-Snow Model



Tire-Snow Model ValidationTire-Snow Model Validation

Compare: Wheel Forces
Sinkage
Snow Deformation

Using: Experimental Measurements
NATO Reference Mobility Model
Finite Element Model
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Vehicle / Tires Used in 
Experiments

Vehicle / Tires Used in 
Experiments

•Jeep Cherokee 235/75 R15

•HMMWV (Hummer) 
37x12.5 R16.5

•HEMMTT (30 ton, off-road 8x8) 
16.00 R20
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Jeep Tire on SnowJeep Tire on Snow

Longitudinal 
symmetry plane



Jeep Rigid Wheel on Snow
(Plastic Strain)

Jeep Rigid Wheel on Snow
(Plastic Strain)



HMMWV TireHMMWV Tire



HMMWV Tire Contact PatchHMMWV Tire Contact Patch



HEMTT Tire in SnowHEMTT Tire in Snow



HEMTT Tire in SnowHEMTT Tire in Snow



Measuring Snow
Deformation

Measuring Snow
Deformation

•Mark snow

•Vehicle action

•Excavate

•Mark snow

•Vehicle action

•Excavate



TransverseTransverse

LongitudeLongitude

AngleAngle



Modeled Vs Measured DeformationModeled Vs Measured Deformation

Longitudinal CutLongitudinal Cut



Modeled Vs Measured 
Deformation

Modeled Vs Measured 
Deformation

Transverse CutTransverse Cut



Comparing 
Measured Density 
to Model Values

Comparing 
Measured Density 
to Model Values



Motion Resistance (Jeep)Motion Resistance (Jeep)
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Jeep Wheel SinkageJeep Wheel Sinkage

Deformable Tire FEM
Rigid Wheel FEM



HMMWV Motion ResistanceHMMWV Motion Resistance
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Snow Density for field data 160-240 kg/m3
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HMMWV SinkageHMMWV Sinkage
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HEMTT SinkageHEMTT Sinkage
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Summary and ConclusionsSummary and Conclusions
• Validated Material Model of Fresh Snow

• FEM Tires Rolling on Snow (compared with snow 

deformation, sinkage, and motion resistance forces)

• Scattered data but trend lines are mimicked by FEM

• Rigid wheel good assumption for shallow fresh snow

• Effects of deformable tire and inflation pressure small 

for steady state, but more important for dynamics
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Other Applications
Rutting of unsurfaced roads
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Application:  
Washboard Formation



Application
Pavement Performance
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Future WorkFuture Work

•Slip angle and lateral traction testing and FEM

(w/ NATC and UAF)

•Link vehicle dynamics and snow-tire FEM models

(w/ MSC/ADAMS)

•Interface Friction & Tread Interlocking  

(variable friction law and submodeling)

•Layered pavement systems
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